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The implications of probabilistic secretion of quanta for the functioning of neural networks in the central
nervous system have been explored. A model of stochastic secretion at synapses in simple networks,
consisting of large numbers of granule cells and a relatively small number of inhibitory interneurons, has

been analysed. Such networks occur in the input to the cerebellum Purkinje cells as well as to
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hippocampal CA3 pyramidal cells and to pyramidal cells in the visual cortex. In this model the input
axons terminate on granule cells as well as on an inhibitory interneuron that projects to the granule cells.
Stochastic secretion at these synapses involves both temporal variability in secretion at single synapses in
the network as well as spatial variability in the secretion at different synapases. The role of this stochastic
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200 W. G. Gibson and others Secretion at granule cell synapses
variability in controlling the size of the granule cell output to a level independent of the size of the input
and in separating overlapping inputs has been determined analytically as well as by simulation.

The regulation of granule-cell output activity to a reasonably constant value for different size inputs
does not occur in the absence of an inhibitory interneuron when both spatial and temporal stochastic
variability occurs at the remaining synapses; it is still very poor in the presence of such an interneuron
but in the absence of stochastic variability. However, quite good regulation is achieved when the
inhibitory interneuron is present with spatial and temporal stochastic variability of secretion at synapses
in the network. Excellent regulation is achieved if, in addition, allowance is made for the nonlinear
behaviour of the input-output characteristics of inhibitory interneurons.

The capacity of granule-cell networks to separate overlapping patterns of activity on their inputs is
adequate, with spatial variability in the secretion at synapses, but is improved if there is also temporal
variability in the stochastic secretion at individual synapses, although this is at the expense of reliability
in the network. Other factors which improve pattern separation are control of the output to very low
activity levels, and a restriction on the cumulative size of the excitatory input terminals of each granule
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cell.

Application of the theory to the input neural networks of the cerebellum and the hippocampus shows
the role of stochastic variability in quantal transmission in determining the capacity of these networks for

pattern separation and activity regulation.

1. INTRODUCTION

An important source of natural variability in any
neural network is the probabilistic secretion of trans-
mitter quanta at synapses (Katz 1969; Bennett e/ al.
1977; Redman & Walmsley 1982; Korn & Faber
1987). The statistics of secretion at single synapses has
been analysed in detail (Bennett & Robinson 1990;
Redman 1990) but its implications for the function-
ing of neural networks has not been much explored
(Little & Shaw 1975; Burnod & Korn 1989). In the
present work we have examined the effects of prob-
abilistic quantal secretion at synapses in realistic
neural networks of granule cells and inhibitory
interneurons.

Granule cells exist in very large numbers, compared
with other neuron types, at the input to the cerebellum,
hippocampus and visual cortex (Cajal 1911; Lorente
de N6 1933, 1934). Marr (1969, 1970) suggested that
these granule cells might serve at least two functions:
one of these is to orthogonalize overlapping inputs; the
other, in conjunction with inhibitory interneurons, is to
ensure that large inputs do not saturate the system, by
restricting them to a relatively constant size. The
granule cells then perform the function of pattern-
separation and the inhibitory interneurons perform the
additional function of ensuring that the number of
active fibres is kept within acceptable bounds by
controlling the threshold of the granule cells (Willis
1975, 1986).

Only the granule cell networks of the cerebellum
have been analysed in detail (Marr 1969; Albus 1971;
Torioka 1978), although roles for the granule cells in
the fascia dentata of the hippocampus have been
indicated (Marr 1971; McNaughton & Morris 1987;
McNaughton & Nadel 1989). Torioka (1979), by
using a two-layered neural network with inhibitory
connections that utilized threshold elements, showed
the importance of inhibitory connections in the
cerebellum for pattern separation and how the stan-
dard deviation of the threshold values of the threshold
elements also contributed to pattern separation;
maintaining this standard deviation to a small-value

Phil. Trans. R. Soc. Lond. B (1991)

greatly enhanced pattern-separation (Torioka & Tkeda
1988).

This work presents analytical solutions and Monte
Carlo simulations of the functioning of the granule cell
network in the cerebellum and the hippocampus. Tt
shows that pattern separation and the control of the
size of the output to a level independent of the size of
the input are both greatly improved by the stochastic
nature of quantal secretion at synapses. The paper is
organized as follows. In §2 the model network is
described and basic quantities such as activity level
and pattern overlap are defined. Then the behaviour of
the network is studied in the absence of any stochastic
secretion of transmitter at synapses. This work serves to
show the formalism in a simple context, and to
emphasize the severe limitations of the model if
stochastic secretion is not included. In §3 the nature of
stochastic secretion of quanta at granule-cell synapses
is described, with emphasis on the fact that the total
variability contains both a spatial and a temporal
aspect. §§4 and 5 then incorporate this synaptic
variability into the basic model network, first without
an inhibitory interneuron, then with a linear one and
finally with a more biologically plausible nonlinear
one. §6 is concerned with the development and
application of analytic approximations which work
well in precisely the case where computer simulation of
the network becomes difficult, namely when the
granule cells have many excitatory inputs, as is the case
for the hippocampus. §7 provides the conclusion by
first showing the relevance of the model network to the
functioning of the input to the cerebellum and the
hippocampus; it then provides an experimental pro-
cedure for testing the suggested function of these
networks and the role of probabilistic secretion of
quanta.

2. MODEL NETWORK

The basic model neural network is the two-layer
system shown in figure 1a. The input layer consists of
n neurons, and the output contains ¥ neurons (granule
cells). It is assumed that each granule cell receives
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Figure 1. (a) Structure surrounding one inhibitory interneuron (IIN). The n input neurons form direct excitatory
connections with the N granule cells, with R input fibres synapsing with each granule cell. The connections are
random, in the sense that each of the R inputs has probability 1/z of coming from a given input fibre. Each input
fibre thus branches an average of NR/n times. All the input neurons form excitatory synapses with the IIN, which
in turn forms inhibitory connections with each granule cell. Typical values are 60 < n < 100, N ~ 5700, R ~ 4 in the
case of the cerebellum. () Structure around one granule cell. The typical granule cell has R inputs, chosen at random
from the n input fibres. These are relabelled 1,2, ..., R, and the connections weighted by random variables W, W,
..., W, which represent the amount of transmitter released when the input fibre is active. M is the corresponding

weight for the IIN-to-granule cell connection.

exactly R inputs, from R different input neurons. The
connections are taken to be random, in the sense that
each of the granule-cell inputs has probability 1/n of
coming from a given input neuron. All 7 input neurons
also make excitatory connections with the inhibitory
interneuron (IIN), which in turn makes inhibitory
connections with all the N granule cells.

In the following, it is the statistical properties of the
system that are to be studied: for example, the average
output on the granule cells when a large number of
different patterns are placed on the input neurons.
Therefore the precise behaviour of individual granule
cells under completely specified inputs is not required.
The desired quantities can be obtained by considering
one typical granule cell, and then averaging over a
distribution of synaptic weights. More precisely, a
randomly selected granule cell is considered. This
makes synaptic connections with R input neurons
chosen randomly from the n available. These R neurons
are renumbered 1,2, ..., R, and the stochastic nature of
synaptic transmission is accounted for by assuming
that the amounts of transmitter secreted at the
corresponding synaptic terminals are random variables
Wi, Wy, ..., Wy. (See figure 15 and §8¢). The W’s
take into account both the variability in a single
terminal, which is of a temporal nature, and the spatial
variability between terminals. The temporal variability
results in differing secretions from a single terminal;
the spatial variability includes variation among the R
terminals on one granule cell and between different
granule cells. There will also be variability in trans-
mission from the input neurons to the IIN, but because
the IIN sums a large number of potentials it is not
necessary to assign different weights to these inputs (see
§4¢). The single connection from the IIN to the
granule cell is assigned a weight M, which is again a
random variable incorporating both spatial and tem-
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poral variability. This stochastic variability will be
treated in detail in §3; for the rest of this section all
weights will be taken to be fixed.

Consider now the network shown in figure 14. A
pattern on the input neurons is given by the vector
x = (x;,%,,...,%,), where x; is 1 if the ith input neuron
is active and is 0 otherwise. Since the granule cell is
chosen at random, the order of elements in x may be

ignored and it can be assumed that x,,x,,...,x, are
independent random variables with
p=Px,=1), i=12,....n (1)

That is, ¢ is the probability that a randomly selected
input is active; it will be called the activity level
for pattern x. Because x; takes values 1,0 only, then
E(x;) = ¢, where E denotes the average or expectation
of a random variable. The granule cells are assumed to
perform a linear summation on their inputs; that is, the
synaptic potentials due to different active input fibres
add linearly, no account being taken of nonlinear
summation problems (McLachlan & Martin 1981).
Thus the total input of transmitter to the typical
granule cell from the input neurons is

Q= X W x. 2)
k=1

The granule cells are taken to be threshold units, and
thus fire if @ > H(¢), where H(¢) is the total threshold
on the granule cell. It is given by

H(g) = 0,+0(¢), (3)

where 6 is the intrinsic threshold on the granule cell
and 6(¢), which will be positive, is the contribution
arising from the IIN. If the granule cell performs a
linear summation on the IIN output, then

0(¢) = MG(g), (4)

Vol. 332. B
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where G(¢) is the total TIN output, and M is the
synaptic weight described above. This is probably a
good first approximation but the actual dependence of
0(¢) on G(¢p) is likely to be more complicated. A more
realistic model is described in §4¢.

The output pattern on the set of N granule cells is
denoted by X = (X, X,,..., Xy) where X, is 0 or 1.
The output activity level is

®=PX,=1), i=12,..,N, (5)

where again, under the statistical assumptions, the
activity level is independent of the particular granule
cell considered. It follows that @ = E(X,); also

@ =PQ>H), (6)

that is, the output activity level @ is given by the
probability that the input @ to the granule cell exceeds
its threshold H.

The activities ¢ and @ may be thought of as
averages in the following sense: for a large system
containing many input fibres and granule cells, ¢ is the
fraction of input fibres active when pattern x is
presented, and @ is the fraction of granule cells
activated as a result. Equivalently, suppose a number
of different input patterns are placed sequentially on
the input fibres, with all patterns having the same
average fraction ¢ of fibres active, but with the
sequence of active and inactive fibres entirely random.
If the number of patterns presented is large, then one
can focus attention on just one (randomly chosen)
input fibre: ¢ will be the fraction of times that this
input fibre is active. Also, in the case where all the
weights W, and M are fixed and cqual, it is only
necessary to look at one (also randomly chosen)
granule cell: @ will be the fraction of times this granule
cell fires. In the case where the weights are variable it
is necessary to sample the output from a number of
granule cells; however, even here one can consider the
(mathematically) equivalent situation of looking at
just one granule cell, but treating the weights as
random variables. This is the approach taken when
doing computer simulations of the network, and further
details are given in §8e.

To investigate pattern separation it is necessary to
consider two input patterns, x and y, as well as their
corresponding outputs X and Y, to find the overlaps
when the input patterns are placed sequentially on the
input neurons. There are now two input activity levels
¢, and ¢,, and also an input overlap activity

Thus i, is the probability that an input neuron is
active under both pattern x and pattern y. The actual
overlap is mecasured by the quantity

Tow = Vau/ V (P2 By)- (8)

For n large, 7,, can be interpreted as the cosine of the
angle between x and y, where the patterns are
considered as vectors in an n-dimensional space.

The output overlap is measured by

i=1,2. ,n (7)

Phil. Trans. R. Soc. Lond. B (1991)
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where @, and @, are the output activities for X and ¥
respectively, and the overlap probability ¥, is defined
by an equation analogous to (7). Again, 7., has an
interpretation as the cosine of an angle. Thus the line
1., = T1,, corresponds to no improvement in pattern
separation and the region below this line represents an
improvement.

One can also consider the situation in which many
pattern pairs {x, y} are presented to the network; 7, is
then related to the fraction of times that a randomly
chosen input fibre is active under both patterns in a
pair, and 7, is related to the fraction of times that a
randomly chosen granule cell is fired by both members
of a pair. (For the precise relations, one must use (8)
and (9).) Again, in the variable-weight case, sampling
from different granule cells is equivalent to monitoring
the output of a single granule cell, but with the weights
applied as random variables. §8e¢ gives details as to
how this approach is used in computer simulation.

It is to be emphasized that it is not the actual
ordering of 1’s and 0’s in an input or output pattern
that is of interest in this work. Rather, it is the activity
levels ¢ and @, to which are now added the quantities
Y, ¥, 7 and T characterizing pattern overlap. In this
way it is possible to analyse the behaviour of a network
with an arbitrary (large) number of input and output
neurons (figure 14) by averaging over the behaviour of
a subsystem (figure 15).

Let H,, H, be the granule cell thresholds for inputs
x,y, respectively. From (3), H, = 0,+0(¢,), H, =
0y+0(¢,) and the output activities can be expressed as
¢, =PQ,>H,), P, =PQ,>H,) and

Vo, = PR, > H,)N(Q,> H,)]. (10)

(a) Output in the absence of an inhibitory
interneuron

First consider the situation which would prevail if
the IIN were absent. In this case, the total threshold on
the granule cell is just the intrinsic threshold: H = 0),,.
If all the weights W, are equal (and without loss of
generality they can be taken to be unity), the output
activity is simply a sum of binomial probabilities

(§8a(i)):

b= § b(k; R, ). (11)

k>0,

Figure 2a shows the output activity @ plotted
against the input activity ¢ for R = 4 and four different
choices of ¢,. Note that it makes no difference which
particular value of ¢, is chosen in ecach interval, since
for W, = 1 the total input to a granule cell is an integer.

The output control shown here is very poor: a low
threshold gives almost no control, with @ rapidly
becoming large; a high threshold severely restricts the
output for small ¢, but again is ineffectual for large ¢.
These extremes arc undesirable: a very small output
means that information encoded in the input patterns
will be lost; a large output will lead to overload in
subsequent stages of the network. (This has been
discussed in the context of the cerebellum by Marr
(1969) and Albus (1971).) Figure 2a shows that there


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

Downloaded from rstb.royalsocietypublishing.org

Secretion at granule cell synapses

(a)

1.0 PR
A
I’ a/
Vi 4 /I
i /
08 ’ / /
e / //
, /
/ / /
S / 4
=06 F (01) (1,2, @3/  (34y
s / 7 /
G ! !
@ / / /
5 ’ / /
= / / /
8 04 | l’ ./ /
AN /
/ ) /
/ / /
/ /
/ / /
; / /
02 ’ / /
Il /o /
s / 7
, Y s
s e -
P ,"- //
0.0 Lezlm—l 1 ] 1
0.0 0.2 0.4 0.6 0.8 1.0

input activity ¢

W. G. Gibson and others 203

(b)

1.0
0y ——
//.;/
49‘ .
25
5 T
0.8 Py
]
(1,2)-- /
7 i
&~ e /./ /
g 06 T - V)
5 7/ /
3 4 7/ /
o o d /
= /
aQ 7/ /
5 04 4 /
o (2,3)/ /
e /
d /
< 7
o s /
02 f e /
4 /
o Rd /
- s
P (34,7
- ~
,/'/ -~
00 ke ] — ] 1
0.0 0.2 0.4 0.6 0.8 1.0

input overlap T

Figure 2. (a) Granule-cell output in the absence of an IIN and with fixed weights. The output activity level @ on the
granule cells is plotted against the input activity level ¢ on the input fibres. All connections have unit weight and the
number of input fibres connecting to each granule cell is R = 4. The four curves are, from left to right, for the intrinsic
granule cell threshold 6, in the ranges (0, 1), (1,2), (2, 3) and (3, 4), respectively. The exact value of §, in each of these
ranges does not matter, since the total input to the granule cell can take only integer values. (4) Pattern separation
in the absence of an TIN and with fixed weights. The output overlap 7, is plotted as a function of the input overlap
7., The graph is drawn for the same four cases as in (a), with input activities ¢, = ¢, = 0.5. Pattern separation is
very good for the (3,4), but since this model does not control @ this is not of any significance.

is only a small range of ¢ values for which the output
is of a reasonable magnitude.
Pattern separation is given by

R R
Vo= 2 X Wy, (12)
>0,

where W, is a sum over multinomial distributions
(§8a(i)). 7, can then be calculated as a function of 7,
by using (8) and (9). Figure 24 shows this relation for
the case R =4, ¢, = ¢, = 0.5 and the four values of #,
used in figure 2a. Pattern separation is very good for
the case 3 <@, <4, but since this model fails to
regulate @ this result is not really of any significance.

It is instructive to relate the early work of Marr
(1969) on pattern separation in the cerebellum to the
present treatment. Marr did not take account of
variability in synaptic transmission (W, = 1), and
initially assumed that all R inputs had to be active
before a granule cell would fire. This corresponds to
setting R—1 < 6, < R in the present treatment, so
& =¢*and ¥,, = (¥,,)" leading to T, = (7,,)". For
the case R = 4, this corresponds to the lowest curves in
figure 24, b. Thus separation is optimal but, as pointed
out above, @ is so poorly controlled that such a system
works for only a very restricted range of ¢ values. Marr
subsequently relaxes the above threshold condition
(with the introduction of variable codon size), but the
output control remains relatively crude.

Phil. Trans. R. Soc. Lond. B (1991)

(b) Output with a linear inhibitory interneuron

The previous section shows that some mechanism,
over and above a fixed threshold on the granule cells,
is necessary for the regulation of the level of output
activity on the granule cells. Marr (1969) suggested
that the IIN plays an important role in this regard, and
this will now be investigated, using a simple linear
model; a more complex and physiologically realistic
one will be given in §4c¢.

About the simplest assumption one can make is that
the IIN output is directly proportional to its input so
that its action is essentially just that of a summing
device. If no account is taken of any variability in the
effect of each input neuron input to the IIN, then the
average total input is simply proportional to the
activity level ¢ of the input neurons. Thus the output
of the IIN is taken to be G(¢) = c¢, where ¢ is a
constant, and the total threshold on a granule cell
becomes H(¢) = 0,4+ c¢. If there is also no variability
in the input neuron to granule cell connections (i.e. all
W, =1), then the theory of §8a(i) applies and @ is
given by (11), with 6, replaced by H. This leads to the
characteristic ‘saw-tooth’ shape shown by the solid line
in figure 3a, where @ is plotted as a function of ¢ for
the case R = 4, H = 1+4¢. The ‘jumps’ occur at those
values of ¢ for which H(¢) takes integer values 14,
since for W, =1 the total input to a granule cell is
integral, and so as H(¢) increases through an integral
value the granule cell requires an additional active
input before it fires. It is clear that this general
behaviour is not dependent on the detailed output

14-2
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Figure 3. (a) Granule cell output for the linear IIN model. The output activity @ is plotted against the input activity
¢ for a network incorporating the linear IIN model. In this model the total threshold on a granule cell is H =
0, + cp M, where 0, is the intrinsic threshold of the granule cell, ¢¢ is the contribution from the IIN, taken to be simply
proportional to its total input, and M is the weight on the IIN-to-granule cell connection. For this graph, R = 4 and
H=1+4¢M. (——), Weights W, and M are fixed at 1.0. The ‘jumps’ occur at those values of ¢ at which H takes
integer values, i.e. at ¢ = 0.25, 0.5, 0.75. At each of these values an extra input must become active to fire the granule
cell. Thus output control is very poor, and the model has the highly undesirable feature that a very small change in
input activity can drastically alter the output activity. (------ ), Weights I, and M are normal random variables, with
means 1.0 and standard deviations o, = 0.5 and o,, = 0.1, respectively. Calculation is by simulation (appendix 7.5).
The effect of stochastic variation in ¥, and M has been to remove the ‘jumps’, and give @ a smooth dependence on
¢. (b) Pattern separation for the linear IIN model with fixed weights W, = 1 and M = 1. The output overlap T, is
plotted as a function of the input overlap 7, for a network with the same parameters as for the solid curve of (a).
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(—) ¢, = b, =049; (------ )s . = ¢, = 0.51. Although these input activities are close, they are on opposite sides
of a large jump in output activities (see (a) of this figure) and hence lead to very different pattern separations.

from the IIN, any reasonable output will lead to a saw-
tooth graph. It would require a highly nonlinear TIN
output, following exactly the peaks and troughs of
figure 34, to level the granule cell output.

The output overlap is given by (12), with the lower
limits on the sums replaced by H, and H,. Pattern
scparation depends crucially on the values of H, and
H, and hence on ¢, and ¢,. Figure 3 5 shows the output
overlap 7, as a function of the input overlap 7, for the
case where R =4 and H = 1+4¢. The solid curve is
for ¢, = ¢, = 0.49: as can be seen from the solid curve
in figure 34, this value occurs just before a downwards
jump and gives a relatively high output activity (@ ~
0.3) which leads to poor pattern separation. The
broken curve is for ¢, = ¢, = 0.51: this value occurs
just after the jump and gives a low output activity
(@ ~ 0.07) which leads to good separation. But it
makes no physiological sense to have pattern separation
so highly sensitive to small changes in the input; @
should be at least a smooth function of ¢. Thus
additional control mechanisms must be sought.

3. STOCHASTIC SECRETION OF QUANTA
AT GRANULE CELL SYNAPSES

In the previous section it was shown that satisfactory
control of the granule-cell output activity @ cannot be

Phil. Trans. R. Soc. Lond. B (1991)

achieved in a network with fixed synaptic weights;
even the presence of an inhibitory interneuron does not
give anything like constant output. The next step is to
take into account the variability in the strengths of the
connections between various neurons. This variability
occurs because of the stochastic nature of quantal
release at synaptic terminals, and as mentioned
previously has both a temporal and a spatial aspect.
This 1s now considered in more detail.

(a) Stochastic secretion: temporal variability in
transmitter secretion

Consider a single synaptic terminal, and suppose
that it has v release sites. In the general case, these sites
will have different probabilities py, ps, . .., p, of releasing
a single quantum of transmitter when active. In the
particular case where all these probabilities are equal
to p the total number X of quanta released at the
terminal follows a binomial distribution with par-
ameters v and p:

PX=r)=b(r;v,p) = (:)ﬁ’(l 2 (13)

The quantal size Z is not fixed, but follows a unimodal
distribution which will be assumed to be normal with
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Figure 4. Probability density function for transmitter release
at a single terminal. The terminal contains v release sites,
each of which releases a quantum of transmitter with a
certain probability p,i=1,2,...,», when active. The
quantal size is taken to be normally distributed, and the
broken curve gives the distribution of the total amount of
transmitter, W (equation (14)), for the case where all the
probabilities are equal (p,=p,i=1,2,...,v). The solid
curve is the normal distribution N(m,s?). (Actual value used
in drawing the curves are v =10, p = 0.3, 4 = 0.333, o =
0.075, giving m = 1, s = 0.5.) In subsequent calculations the
normal curve will be used. In every application much
averaging occurs and hence the fact the normal curve is a
smoothed version of the more accurate distribution is of no
consequence.

mean y and variance o®. Since the quanta are to be
added, this assumption is not of crucial importance,
and any similar distribution would be acceptable. The
total amount W of transmitter released at the whole
terminal is thus a sum of X independent, identically
distributed random variables Z:W=2Z+
Zy+...+Zy. It follows that W has mean m = vpu
and variance s*=v[p(l—p)—0o>]u*+vpo®, where
p=2;_1p/v and o =27 (p,—p)%/v. Thus W has

density function

Swlw) = 5

—\/—%Z—tr—)exp<—w)b(7;v,p). (14)

2ro?

(cf. Robinson 1976). W may be looked upon as the
weight associated with a single connection from input
neuron to granule cell.

In the calculations performed in this work the
distribution (14) has, for simplicity, been replaced by a
normal distribution with mean m and variance s* as
given above. The relation of this normal distribution to
(14) is shown in figure 4, where the broken curve comes
from (14) and the solid curve is the normal density
function with parameters m and s®. The normal curve
gives a smoothed version but, because of further
averaging, both spatial and temporal, this difference is
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of no consequence and produces effectively the same
results.

(b) Stochastic secretion: spatial variability in
transmaitter secretion

The parameters v, p,, p, - - -, p,, i, 0 and hence m, 5%,
introduced in the previous section are fixed for a given
terminal, but vary from terminal to terminal, both on
the same and on different granule cells. In other words,
they are conditional on the terminal chosen, and if the
weights are now labelled W, where £ is the terminal
number, then m and s* should be replaced by m, =
E(W,|k) and s2 = var (W, |k). Thus m, is a random
variable; for a given value of £ it is the time-averaged
amount of transmitter released at the kth terminal
when it is active. If m, has mean g, and variance o2,
then the overall mean of W, including both spatial and
temporal variability, is #,, and the overall variance is
%+ 0%, where o2 = E(s2).

Each input neuron-to-granule cell weight W, can
thus be written as the sum of two random variables,

W,=WS+wr, (15)

where W = m, is the spatial part and W = W, —m, is
the temporal part. Thus W varies only with k; for fixed
k, corresponding to repeated inputs on the same
terminal, it is a constant. On the other hand, W[
changes from input to input, even for fixed £; that is,
the same terminal. Thus W may be looked upon as a
measure of the number of release sites which a terminal
possesses, whereas W is a measure of the temporal
fluctuations which occur around a mean value. As
explained above, both W} and W will be taken to be
normal random variables, with distributions N(u,,, 03)
and N(0,0%), respectively, so that

o = oi+ ok (16)

This distinction between spatial and temporal
variation is not relevant to the consideration of the
control function of the network, since this involves
looking at the results of a single input (§4), but it is of
importance for pattern separation, which involves two
separate inputs (§5).

There is an alternative treatment of synaptic
transmission, in which only the spatial variation is
included in the weights, and the temporal variation is
taken into account by introducing a certain probability
function which governs the firing of the neuron. Its
relation to the present formalism is given in §8.

4. STOCHASTIC SECRETION AND THE
REGULATION OF GRANULE-CELL OUTPUT
ACTIVITY :

The effect of stochastic secretion of transmitter,
considered in §3, will now be incorporated into the
model network of §2, first without an inhibitory
interneuron, then with a simple linear one, and finally
with a more realistic nonlinear one. Only output
control is considered in this section, so there is no need
to separate stochastic secretion into its spatial and
temporal components: only the total variability is
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Figure 5. () Granule cell threshold for @ = 0.2. The total granule cell threshold H is plotted as a function of the input
fibre activity ¢. The points are the result of a computer simulation of the actual threshold needed to control the output
to @ = 0.2. Parameters used are R =4, u, =u,, = 1.0, o, =05, 0,, =0.1. (——), Nonlinear model; (------ )
linear model: H = 1.0+4¢. The solid curve is the result of fitting the general form H =6 +c¢,/{l+c,/
[(@/dy) —1.0—1In(¢/Py)1}, ¢ > ¢, In such a fitting there is some flexibility in fixing the parameters, but this is not
excessive ; the values of 6, and ¢, are to a large extent dictated by the behaviour of A for small ¢. 6, is the ¢ = 0 limit
of A, and can be taken as the value at which the linear approximation to H, shown by the broken line in (a), crosses
the axis. The IIN does not fire at all for ¢ < ¢, and so H = §, in this range; from (a) this restricts the choice to
0 < ¢, £ 0.1 and a value of 0.05 is reasonable. Once ¢, and ¢, are chosen, c, and c, are uniquely determined by fitting
the curve at two additional points. (The points ¢ = 0.2 and ¢ = 0.8 were used in the present case, but the choice
is not crucial, any two points in the range 0.15 < ¢ < 1.0 would give almost the same result.) The result of
this procedure is 6,=10, ¢,=0.5, ¢, =1045 and c,=26.5 giving the threshold function H =
1.04+10.45/{1.0+26.5/[20¢ — 1.0 —1In (20¢)]}, ¢ > 0.05. (b) Granule cell output for the nonlinear IIN model:
comparison of fixed and variable weights. The threshold function is the nonlinear one shown as the solid line in (a).
(—), All weights equal to unity. This shows very little improvement on the corresponding curve in figure 3a;
indeed, it would require a very highly nonlinear IIN of an extremely specialized nature to achieve much smoothing
in the absence of stochastic variation in transmitter release. (------ ), W, and M normally distributed, with means 1
and standard deviations 0.5 and 0.1, respectively. (The calculation was performed with M in its correct position as
given by (18), but a repeat calculation with the approximation (19) showed that there was very little difference in
this case.) This shows that very good output control can be achieved, over a wide range of input activity, by a
combination of variable transmitter release and nonlinear behaviour in the IIN. Comparison with the broken curve
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relevant since only one pattern (x) is being presented.
The distinction between spatial and temporal only
becomes important for pattern separation, and this is
treated in §5.

(a) Output in the absence of an inhibitory
interneuron

The effect of variable W can be investigated, still
under the assumption of no IIN. If W, is normally
distributed, then the output activity @ can be
calculated exactly (§8a(iii)). The results of such
calculations show that there is only a relatively minor
change from the fixed-weight case shown in figure 2a.
Thus a simple fixed threshold on the granule cells, even
in the presence of stochastic transmitter secretion from
the input fibres, cannot perform more than a ru-
dimentary control on the output activity @; in
particular, it cannot even begin to control @ to a
constant level over a wide range of input activities.

(b) Output with a linear inhibitory interneuron

The linear IIN described by G(¢) =c¢ is now
included. From (3) and (4) the granule-cell threshold
is H=0,+ Mcp, where M is taken to be a normal
random variable with distribution N{g,,,03,). As
before, W, has distribution N(u,, 0%,). In the general
case, it is not possible to write down an exact analytic
expression for @, and computer simulation must be
used (§8¢). For the special cases in which only one of
M or W, is random, precise treatments are possible,
and details are given in §8a (ii), (iii).

The broken curve in figure 3a gives the results of a
simulation for the case R=4, H=1+4M¢, p,, = 1.0,
oy = 0.5, uy, = 1.0, 0, = 0.1. With these values of the
standard deviations, the ‘peaks’ have been removed,
and @ shows a smooth dependence on ¢. This is
already a considerable advance on the ‘saw-tooth’
curve; however, it is possible to go further and show
that @ can be controlled to almost a constant value
over a wide range of ¢ values. To achieve this, a more
sophisticated model of the functioning of the IIN is
needed, and this is addressed in §4 (c) below.

It is instructive to determine the IIN output that
would be required if @ were to remain exactly constant
for the complete range 0 < ¢ < 1. Figure 5a shows the
ideal total granule-cell threshold, for the case R = 4,
0,=10, o, =05, o,,=0.1 and @ =0.2, under
the assumption that A has the form 6,4+ MG(¢). The
points give values of the ideal threshold, and were
calculated by numerical simulation (§8¢). The broken
line is the linear model, H = 1 +4¢, used in figure 3a;
it can be seen that deviations from flatness in the

Secretion at granule cell synapses 207

broken curve in figure 34 are related to deviations in
the linear threshold function (broken line) from the
ideal threshold (points) in figure 5a. The deviation
from linearity of the ideal threshold function becomes
more pronounced if @ is controlled to lower values; for
example, @ = 0.05. In the next section a model IIN
will be constructed which gives a much closer fit to the
ideal threshold.

(¢) Output with a nonlinear inhibitory interneuron

A single TIN receives inputs from a large number n
of fibres (see figure 1a). The total input is S = ¥, x, +
Voxy+...+V, x,, where V, is the amount of transmitter
released from the terminal of the ith input fibre, given
that it is active. Suppose ¥, has mean x, and variance
oy. (In§2 an actual distribution for a quantity such as
V' was derived, but that much detail is not required
here.) It follows that § has mean §=nu,¢ and
variance a¢(l—¢) (ui+ok) +np*or. (Cf. (39) and
(40).) It is assumed that the IIN has a large diameter,
like that of the Golgi cell, and consequently a relatively
low input impedence ; hence the effect of each quantum
of transmitter secreted by the input fibre terminals will
be small. If it is assumed that both x, and o, are of
order 1/n for n large, then S is of order 1 and its
standard deviation is of order 1/4/n, so to a good
approximation S can be replaced by §. Thus even in
the presence of variable transmitter secretion it is still
reasonable to assume that the average input to the ITN
is proportional to ¢. Consider now how the IIN
responds to this input. The basic assumptions are: the
activity pattern x is placed on all the input fibres
simultaneously; the IIN receives an instantaneous
input § = nu, @, which then decays exponentially,
with time constant 1/a; while the IIN’s membrane
potential is above its internal threshold 4 (assumed
constant), it fires a train of impulses. (This firing rate
is modelled as an inhomogeneous Poisson process, with
average rate proportional to the amount by which the
membrane potential exceeds £.) The output of the IIN
1s assumed to be proportional to the average number of
impulses it fires.

The result of this model (see §8¢ for details) is that
the output of the IIN, for an input activity level ¢, is
proportional to G(¢), where

@i -1-1(2). 6>,

G(¢) = ’ (17)
03 ¢ < ¢0'
¢y = h/np, is the minimum activity level that will

produce an output from the IIN. If (4) holds, then an
expression for the total threshold H has been obtained.

in figure 34 shows that the effect of the nonlinearity is to perform a levelling on the already-smooth output; the most
important contribution to output control remains the stochastic transmitter release. (¢) Granule-cell output for the
nonlinear IIN model: different standard deviations in W, and M. The threshold function H is the same as for (5).

(—), 0y = 0.0, 7, = 0.1; (—-

—), 0y, = 0.5, 0, =0.0; (------ ), 0y, = 0.5, ¢, = 0.1. Flatness could also be

achieved for o, smaller than 0.5 by increasing o, but it is found that pattern separation suffers if o, is allowed to
become much larger than 0.1. Thus the most satisfactory method is to keep o, at or below 0.1, and increase o, until
the desired level of control has been achieved. The values o, = 0.5, o, = 0.1 gives sufficient smoothing, and have

been used in most of the calculations.
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The effect that this inhibitory train of impulses has
on the membrane potential of the granule cell remains
to be seen. The simplest assumption is that the resultant
hyperpolarization is proportional to the number of
impulses received, i.e. to G(¢). However, this does not
take into account the detailed nature of the summation
process, which assigns a decreasing weight to sub-
sequent impulses, and is particularly important in the
case of inhibitory inputs in which the equilibrium
potential for transmission is close to the resting
membrane potential. For example, suppose the in-
hibition is simply due to transmitter opening channels
to potassium ions. Then the total membrane potential
for the granule cell, V, satisfies

I= V=V G+ (V=V,) G+, (dV/dy),

where subscript K refers to the potassium ions and
subscript A refers to all other ions. Gy and G, are
conductances, V; and V, are the equilibrium potentials
for potassium and other ions respectively, C,, is the cell
membrane capacitance and [/ is the total current
through the membrane. Under the assumption of no
membrane current (i.e. / = 0), this has the steady-state
solution

V-V, = M_
14+G,/Gx

The following assumptions are now made: the
arrival of the train of impulses from a single excitation
of the TIN is sufficiently rapid that current loss through
the granule-cell membrane can be neglected ; initially,
the potassium channels are closed (Gx =0). The
arrival of impulses opens a number of potassium
channels, and the final value of Gy is proportional to
the total number of impulses, and thus proportional to
G(¢); the total threshold is the sum of the intrinsic
threshold, ¢, and the change in membrane potential
due to the increase in Gy. It is assumed that the IIN
output consists of a train of action potentials of length
cG(¢), where c is a proportionality constant. Suppose
that the ith of these releases an amount of transmitter
q;, where the ¢’s are identically distributed random
variables with mean p, and variance 2. Then the total
transmitter released is the sum of these ¢,’s, so the
average amount released is c¢G(¢)u, and hence the
average increase in potassium conductance will be
proportional to the product u,G(¢). The standard
deviation of g, is 07,1/ (cG(@)). Provided cG(¢) is not
too small, this will be small compared to the mean, and
it is a good approximation to set Gy proportional to
MG(¢), where M is proportional to u,. The variability
of ¢, is for a given IIN-granule cell synapse, and is thus
of the type referred to as temporal variation in §2 above,
whereas u, or M varies over the whole set of granule
cells, and was referred to above as spatial variation.

These assumptions lead to the following expression
for the total threshold on a granule cell: H(¢) =
0,+06(¢p), where

€y

0(¢) =m- (18)
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G(¢) is the output of the IIN for an input with activity
level ¢, M is a random variable and c;, c, are
constants.

This model of the IIN with G(¢) given by (17),
together with synaptic wvariability, is capable of
controlling the output activity on the granule cells over
a wide range of input activity on the input fibres. To
show this, it is first necessary to find reasonable values
for the parameters ¢,, 0, c, and c, in the above
expression for H(¢$). This can be done by using
simulation values for H(¢), such as those shown in
figure 5a for the case @ = 0.2. It should be remarked
that the simulation values shown there were calculated
on the assumption that A entered the threshold
function linearly, as in (4). (It would not be possible to
use the nonlinear form (18) without assuming a value
for c,.) Two comments can be made regarding this
approximation. First, for M not too variable and G(¢)
not too large, (18) can to a good approximation be
replaced by

k2 Par F 3/ G(P) ’ (19)

so M appears essentially as a multiplicative factor.
Secondly, the exact value @ =0.2 is of no great
significance, a control to @ ~ 0.19 or @ = 0.21 would
be just as good, and this is in fact what tends to happen
when the approximation (19) is used for the fitting: @
is still controlled to an essentially constant value, but it
may not be exactly the value used in the simulation of
the ideal H.

The solid curve in figure 5a is the result of such a
fitting, and agrees well with the simulation data in the
range 0.12 < ¢ < 1.0. It is not possible to fit points
below about ¢ = 0.12 with this functional form; this is
not surprising, as this corresponds to trying to control
@ to a value considerably larger than ¢ (i.e. an
increased activity), but the role of the IIN is an
inhibitory one. Also statistical fluctuations in the input
@ to a granule cell are large in this region. (This follows
from consideration of the ratio 4/[var (Q)]/E(Q), by
using (39) and (40).) Thus the fact that the analytic
form does not fit for small ¢ is of no practical
importance.

Figure 56 shows @ calculated as a function of ¢ by
using this threshold function. The ‘saw-tooth’ curve
again shows the results of using equal fixed weights on
all connections, and is only a slight improvement on
the corresponding curve in figure 3a. The broken curve
shows the simulation results when I, and M are taken
to be normally distributed, with means 1 and standard
deviations 0.5 and 0.1, respectively. Thus @ is
maintained constant for a wide range of input activities
¢, by spatial and temporal variation in the amount of
transmitter secreted between synapses and the non-
linear behaviour of inhibitory synapses formed by the
IIN.

There is some arbitrariness in the choice of the
standard deviations for W, and M, and flatness in @
can still be achieved by increasing one and decreasing
the other. But pattern separation (see §5 below) suffers
if o, becomes much larger than 0.1, so this value has
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been chosen for o, and then o, adjusted to achieve
the desired control on @. The relative importance
assigned to the variability of M and W, is shown in
figure 5¢: for o, =0, o, = 0.1, the behaviour is a
‘rounded saw-tooth’ (solid curve), for o, = 0.5,
o, = 0 it is almost flat (dot-dash curve) and close to
the previous case where oy, = 0.5, o,, = 0.1 (broken
curve).

@ can also be controlled to other values by a suitable
choice of parameters, and a number of other calcula-
tions have been performed. As already remarked, for
smaller values of @ the deviation from linearity of the
ideal threshold function becomes more pronounced,
but even for @ =0.05 it is still possible to find
parameter values that make the nonlinear model (18)
fit reasonably well, and give an almost-level output for
¢ > 0.1. However, the precise control of @ becomes a
rather delicate matter at very low activity levels, and a
slight change in the parameters of the nonlinear INN
model can have a relatively large effect.

5. STOCHASTIC SECRETION AND THE
SEPARATION OF PATTERNS

The considerations of §4 will now be extended to
pattern separation. The distinction between temporal
and spatial variability in transmitter secretion now
becomes important, because when patterns x and y are
placed sequentially the granule-cell inputs which are
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active for both patterns can undergo a temporal, but
not a spatial change.

(a) The effect of spatial variability in transmitter
secretion

Figure 6a shows 7, as a function of 7, for the case
¢, = ¢, = 0.5. The dotted line 7., = 7,, corresponds
to zero improvement in pattern separation; anything
below corresponds to an improvement. The solid curve
is for the case where @, and @, are controlled to
approximately 0.2 by use of the nonlinear threshold
function (18) (with the usual choice of variable weights
My =ty =10, o, =05, o, =0.1). The lower
broken curve is for the same choice of weights, but with
@, and @, now controlled to approximately 0.05,
showing the considerable improvement in pattern
separation which occurs when the output activity is
lowered. The remaining (dot—dash) curve is again for
@, and @, controlled to 0.2, but with the standard
deviation of M increased to 0.2, showing the reduction
in pattern separation that occurs when the variability
in transmission from the IIN to the granule cells is
increased. Figure 64 shows the effect of different input
activities, again with the usual choice of weights and
with @, and @, controlled to 0.2. These again show
how the separation depends on the amount by which
the magnitude of the output activity @ has been
reduced below that of the input activity ¢.

(b)
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Figure 6. (a) Pattern separation. The output overlap 7, is plotted as a function of input overlap 7,, for the case
R=4,¢,=¢,=05,u,=p,=10,0, =05and o, = 0.10r0.2. In each case the nonlinear threshold function (18)
has been used. The line 7, =7, corresponds to no improvement in pattern separation; the region below this line
represents an improvement. The most striking feature is the great improvement in pattern separation which occurs
when the output activity @ is controlled to a lower level. ( ), @, x P, x202,0,=01;(——), D, P, ~0.2,
0y =025 (------ ), @, ®,~0.05 o, =0.1. (b)) Pattern separation for different input activities. In all cases
R=4,p,=p,=10,0,=05,0,=01and®, ~ &, ~0.2. (——), ¢, = ¢, = 0.2. This shows very little change in
pattern separation, which is to be expected as there has been no reduction in activity. (------ ), ¢, =¢,=08;
(—-—), ¢, =0.2, ¢, = 0.8. There is separation in both cases, since there has been a reduction in activity. Note that
these last two curves are only defined for a restricted range of 7,, values: 7 = 0 corresponds to no overlap of the
patterns x and p, whereas 7 =1 corresponds to complete overlap. These two extremes are only possible if ¢, =
¢, < 0.5; in all other cases, 7 is restricted to a subrange of (0, 1).
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Figure 7. Pattern separation: effect of restricting the sum of
weights from the input fibres to a granule cell. This
implements the suggestion that the cumulative size of the
terminals of a single neuron remains constant as a conse-
quence of the way in which the terminals grow during
development. The parameters are the same as for figure 64
with &, ~ &, =~ 0.2. (—), Zi_, W, unrestricted; (------ ),
2! | W, =4. The graphs show that this biologically moti-
vated restriction leads to an appreciable increase in sep-
aration.
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It has been suggested that the cumulative size of the
terminals of a single neuron remains constant as a
consequence of the way in which the terminals grow
during development (Bennett & Robinson 1989). For
the granule cells this restriction means that the sum of
weights, W+ W, 4+ ..+ W, is a constant C which will
be taken to be the same for all granule cells. This
restriction is easily incorporated into the simulation
programme (§8¢). Figure 7 compares the resulting
pattern separation, with (broken curve) and without
(solid curve) this restriction. (The parameters are the
same as for the solid curve in figure 64, and C'is taken
to be 4.) It is seen that restricting the sum of the
weights considerably improves pattern separation,
particularly in the region of small-to-medium overlap
T,y A reason for the improvement will be discussed in
the context of an analytic approximation for ¥, in
§66 below.

(b) The effect of temporal variability in transmitter
secretion

The above calculations on pattern separation have
all assumed that the entire variability of I is a spatial
one; that is, o, = o4, where oy i1s the standard
deviation of the spatial part of W, (see equation (16)).
The effect of including temporal variability can be
most clearly seen in the context of the special case
where M is constant. From §8¢(ii1), ¥, can be

zy
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Figure 8. (a) Pattern separation: effect of spatial and temporal variability in the input-fibre to granule-cell weights.
The total weight W,, is split into two parts, W, = W+ W], where the spatial part W} has distribution N(u,,, 0'%)
and the temporal part W has distribution N(0,0%). W7 accounts for the variability in transmitter releasc from one
terminal to another (either on the same, or on different, granule cells); W7 is a measure of temporal fluctuations that
can occur around a mean value even for the same terminal. The output overlap T, is plotted as a function of the
input overlap 7,, for the case R=4, ¢, = ¢, = 0.5, u, = p, =10, 0, =0.1. &, and &, arc both controlled to

approximately 0.2 by use of the nonlinear threshold function (18). (——

), 03=0.5,0,=0; (------ ) Og =0, =

0.354; (—-—), o4 =0, o, = 0.5. Thus temporal variability enhances pattern separation, but at the expensc of
reliability in the network since 7 no longer goes to 1 as 7 goes to 1; this means that the same pattern presented twice
will undergo a separation. (b) Pattern separation with both spatial and temporal variability in W, (o5 = o, = 0.354),

together with a restriction on 2% _, W,

Phil. Trans. R. Soc. Lond. B (1991)

T (——) 24 _, W, unrestricted; (------ ), 2t W, = 4.
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expressed in terms of bivariate normal distribution
functions with correlation coeflicients
ppqr = 7/\/(,{79) (O-S/O-W)2> <20)
where p,¢,7 are summation indices. The significant
feature is that p,,,. decreases as the spatial variation og
decreases, and so pattern separation improves. (The
same trend is apparent in the analytic approximation
developed in §64 below.) This trend is born out by
simulations. Figure 8a shows the results for three cases:
total spatial variability (solid curve), total temporal
variability (dot-dash curve), and an equal mixture of
both (broken curve). It is seen that the addition of
temporal variability indeed enhances pattern sep-
aration, especially in the large-7 region. However, this
separation is at the expense of reliability in the network
since the same pattern presented twice (which corre-
sponds to 7 = 1) now undergoes a separation.

The restriction that XMW, be constant can be
combined with the temporal variation of W, discussed
in the previous section. It is clear that the restriction
should apply to the spatial part of W, only, since this is
the only part that the growth factor can affect. Figure
8b shows the separation in the case of an equal mixture
of spatial and temporal variability, without (solid
curve) and with (broken curve) the restriction.

6. ANALYTIC APPROXIMATIONS

Exact analytic expressions can be found for @ and
¥,, in a number of cases:

(i) If all the weights W, are fixed and equal, and if
M is also fixed, then @ is a sum of binomial probabilities
given by (25) and ¥,, is a sum of multinomial
probabilities given by (26).

(i) If again all W, are fixed and equal (and for
convenience taken to be unity), but M is a random
variable which appears linearly in the threshold
function, as in (4), then the method of Torioka (1978)
leads to (28) and (31).

(iii) If M is fixed, and the W,’s are identically
distributed normal random variables, then a variation
of the preceding method leads to (32) and (33) (§
8a (iil)).

These special cases are of interest in their own right,
and can also be used to check simulations. Once
beyond them, in cases where W, and M are both
variable, and/or M appears nonlinearly as in (18), the
only accurate method available is simulation (§8¢).
However, analytic approximations are very useful for
gaining insight into the detailed workings of the model,
and for investigating the way in which the results
depend on the parameters introduced. The following
approximation uses the normal distribution, and is
essentially based on the central limit theorem. For R
large (as in the hippocampus, see § 75) it is a very good
approximation and can replace simulation; for R
small, its quantitative worth is limited, but it still gives
a good qualitative explanation of many aspects of the
model.

Phil. Trans. R. Soc. Lond. B (1991)
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(@) An analytic approximation for the output
activity of granule cells

The output activity is given exactly by (6): @ =
P(Q > H). Application of the central limit theorem
leads to the approximate expression (§84d)

E(Q)— E(H) )
~F
? “°‘"'“(V[var<Q)+var<H)]’

where F ., the distribution function for the standard
normal distribution, is given by (29). This is the basic
equation for @, and it remains to investigate the forms
it takes in various cases.

(21)

Case 1. W, and M fixed
Consider the case where the weights W,,k=1,...,

R, are fixed, though not necessarily equal, and M is
also fixed. Then (21) becomes

(\/ [sf <12~V1;’;;EHW21 )

It is instructive to look at @ as a function of H for fixed
¢. (For this exercise, take H to be independent of ¢.)
Consider first the case W, =1, k=1,...,R: @ is then
simply given by (11) and so is a step-function with R
steps. The corresponding analytic approximation,
using (22), is a smooth curve and so for R small it gives
a drastic smoothing of the step-function. This difference
is lessened if W, is allowed to take different values, as is

o~ F

norm

(22)

1.0

54
o
T

o
~
I
'
peflmnl

02 |

0.0 ! ’ .

granule cell threshold H

Figure 9. Comparison of the analytic approximation for @
with exact values for the case of unequal fixed weights. The
analytic approximation (22) is based on the central limit
theorem, and allows @ to be approximated by a normal
distribution function. @ is shown as a function of the granule
cell threshold H for the case R=4, $ =05, M =1, W, =
0.4,0.8,1.2,1.6. ( ), analytic approximation, using (22);
(------ ), exact, using simulation. Note that had the weights
W, been equal, there would have been only four steps in the
exact curve, and the approximation would have been poor.
The approximation becomes more accurate as the weights
become more variable, and/or R becomes larger.
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Figure 10. Comparison of the analytic approximation for @
with exact values for the case of random weights W, and M.
@ is shown as a function of ¢ for the case R =4, ¢ = 0.5,
M normal, u, =10, o, =0.1, W, normal, g, = 1.0,
o, = 0.5, ( ), Analytic approximation, by using (21);
(-===-- ), exact, using simulation. The agreement is excel-
lent, showing that the stochastic variability in the weights
allows this approximation to be used even for R as small as 4.

shown in figure 9, where R = 4 and ¢ = 0.5, but now
W, takes the values 0.4, 0.8, 1.2, 1.6. The exact curve
now shows many more steps (in fact 10, corresponding
to the 10 distinct possible values of @ = 2 W, x,) and is
now more closely approximated by the normal curve.
Thus even for R as small as 4 the analytic ap-
proximation gives a reasonably good indication of the
overall behaviour of @, as a function of H, if the W,
take different values.

Case 2. W, variable, M fixed

Now take the W, to be identically distributed
random variables with mean u, and variance o3,
Then the approximate @ can be calculated from (21)
using expressions for £(Q) and var (Q) given by (39)
and (40). Calculations of @ as a function of H, by
using this approximation with R =4, ¢ = 0.5, u,, = 1,
oy = 0.5, have been compared with the exact result,
obtained by computer simulation, assuming W, has an
N(py,02,) distribution. The agreement is excellent
over the entire range, showing that the central limit
theorem, even for R small, provides a very good
approximation in the case where W, can take a
continuous range of values.

Case 3. W, and M variable

It is now further assumed that M is a random
variable with mean p,, and variance o%,. Equations
(39) and (40) for E(Q) and var (@) are unchanged,
but expressions are needed for E(H) and var (H ) ; these
are given in §84d.

Figure 10 shows this approximation applied to the
case previously considered in figure 55. Agreement is

Phil. Trans. R. Soc. Lond. B (1991)
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excellent, with the analytic approximation smoothing
out the small ‘kinks’ that are present in the exact case.

(b) An analytic approximation for pattern
separation by granule cells

The method of §64 can be extended to give an
analytic approximation for ¥. The result is that ¥,
can be expressed as a bivariate normal distribution
function; the details are in § 84, where the general form
of the approximation is given by (42).

Calculations for the R = 4 case show that agreement
with simulation is only moderate, with the analytic
approximation giving too much separation at all
overlaps 7,,. Agreement becomes much better for
larger R: calculations for R = 10 show almost no
deviation from the simulation results. Clearly, one has
to be further into the asymptotic region for the
bivariate normal approximation to attain comparable
accuracy to the univariate one. However, even for
R = 4 the approximation shows the correct trend, and
is not too inaccurate in the small-7 region.

The bivariate-normal approximation to pattern
separation provides an analytic explanation for two
effects that were observed in the numerical work of §5:
the increased pattern separation which occurs when the
temporal variability of W, is increased, and when the
sum of the W,’s is fixed. In both cases the correlation
coeflicient p decreases and leads to increased separation

(§84d).

7. CONCLUSION: PHYSIOLOGICAL
STUDIES OF THE MODEL NETWORK AND
THE ROLE OF PROBABILISTIC SECRETION
OF QUANTA

(a) The cerebellar granule-cell/Golgi-cell neural
network

The inhibitory interneurons associated with granule
cells in the cerebellum are the Golgi cells, whereas the
input axons are the mossy fibres and the output axons
the parallel fibres, one per granule cell (Eccles et al.
1967; Llinas 1981). Golgi cells occur at low density
such that a compartmentation of the space available to
the Golgi cells in an idealized model of the cerebellum
would consist of a hexagonal prism about 100 um in
diameter (Palkovits et al. 1972). Between 60 and 100
mossy fibres form excitatory synapses on a Golgi cell
and these fibres are shared by the 5700 granule cells
within the hexagonal prism, each of which receives an
input from about four different mossy fibres (Palkovits
et al. 1972). There is then a very large level of
divergence between the mossy-fibre input and the
parallel fibre output of the granule cells, of the order
10-100. Although mossy fibres terminate in a complex
glomerulus, in which they make contact with the
dendrites of Golgi cells and granule cells, and Golgi cell
axons terminate on granule cell dendrites within the
glomerulus (Chan-Palay & Palay 1971; Llinas 1981),
this synaptic geometry has not been taken into
consideration here. The Golgi-cell inhibition of
granule-cell excitation from mossy fibres is considerable
(Eccles et al. 1967). A single volley in the mossy fibres
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gives a synaptic potential in the Golgi cell of sufficient
amplitude to fire several impulses in the Golgi cell
(Eccles et al. 1966; Eccles et al. 1966). These impulses
give a deeper inhibition of the mossy fibre excitation of
granule cells than do other forms of excitation of Golgi
cells (such as that from the parallel fibres; Eccles et al.
1967).

The model network shown in figure 1« is applicable
to the input stage to the cerebellum, with n between 60
and 100, N about 5700 and R about 4. These values of
nand N are large enough for the statistical assumptions
to be valid, and so almost all the numerical examples
given so far are immediately relevant to the cerebellum.
In particular, figure 56 shows that both stochastic
variability of transmitter secretion and a nonlinear
Golgi cell model can give good control of the output
activity level @ and figures 6, 7 and 8 show the sorts of
pattern separation that can be achieved under various
conditions. The feedback from the granule cells to the
Golgi cells via the parallel fibre, mentioned above, has
not been included in the model network as it would
only give the Golgi cell an extra constant input
(proportional to @). For the linear IIN model this
would lead to an additional constant output and hence
be equivalent to raising the intrinsic threshold on the
granule cells; this would also be true to first order for
the nonlinear model, and so the inclusion of this
feedback would not alter the behaviour of the model
network in any essential way.

(b) The hippocampal granule-cell/basket-cell neural
network

There are five different types of inhibitory inter-
neurons associated with the granule cells in the fascia
dentata of the hippocampus (Cajal 1911; Lorente de
No 1934; Ribak & Seress 1983). Marr (1971) suggests
that at least one of these types, the short axon cells in
the molecular layer of the fascia dentata, provides a
feedforward inhibition of the granule cells of the kind
found for the pyramidal cells in the CAl region (Algers
& Nicoll 1982; Lacaille et al. 1987). The entorhinal
cortex provides the afferent input to both inhibitory
interneurons and to the granule cells via the perforant
pathway (Hjorth-Simoinsen & Jeune 1972; Steward
1976). Within the rat fascia dentata there are about
10% granule cells which receive about 10° perforant
path axons from the entorhinal cortex (Squire et al.
1988; McNaughton & Morris 1987). There is then a
high level of divergence between the entorhinal cortex
and the granule cells, of the order of 10, providing the
opportunity for these cells to perform an ortho-
gonalizing function on overlapping input patterns
(McNaughton & Nadel 1989). It is not known how
many perforant path axons synapse on a granule cell,
but it is clearly much greater that the four mossy fibres
synapsing on a granule cell in the cerebellum, as about
400 perforant axons must be stimulated to discharge a
granule cell (McNaughton 1983).

Thus for the hippocampus R, the number of input
fibres to each granule cell is at least one, if not two,
orders of magnitude greater than for the cerebellum.
For R of the order of 100, computer simulation is very
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slow. Fortunately, this is precisely the region in which
the analytic approximations of §6 are very accurate.
(Even for R as small as 4, and for random weights I,
and M, the normal approximation to @ was already
quite accurate (see figure 10). The approximation was
less good for pattern separation, but by R = 10 there
was only a small error in the large-7 region.) Previously,
computer simulation was used to find the actual shape
of the granule-cell threshold H as a function of ¢. Now
the analytic approximation can be used, and from (22)
an idealized threshold function is

H =R+ F 50m(P) V[$(1—) R], (23)

where FL is the inverse normal distribution function.
(This equation is derived on the basis of fixed weights
but will still be a good approximation provided the
weights have small variances; as is shown below,
satisfactory results can be achieved with o, = 0.05 and
o, = 0.01.) Note that for R large the second term in
(23) is much smaller than the first, and so H does not
differ too much from having a linear dependence on ¢.

This threshold function is now used to find the
output activity under various assumptions on the
weights. For numerical illustration, the values R = 100
and @ =0.2 wil be used, giving H =~ 1004+
8.44/[¢p(1—¢)]. For W, =1 and M = 1, & is given by
(I1) and figure 114 shows it plotted as a function of ¢.
This is to be compared with the R = 4 case shown in
figure 3a; the same saw-tooth behaviour is still present,
although the frequency of the fluctuation in @ is
greater and the amplitude is less.

The output can now be smoothed by allowing
stochastic variability in the weights. Figure 116,
calculated by using (32), shows the effect of allowing
only W, to vary, with o, = 0.05. A similar result is
obtained if W is fixed, but M is allowed to vary, with
o, = 0.01. Note that both these standard deviations
are an order of magnitude less than the values used in
the R = 4 case. It is clear that the combination of both
variabilities will be sufficient to achieve complete
smoothing in the region 0.2 < ¢ < 0.9; for smaller ¢
there will still be some fluctuation, and for larger ¢ the
assumed form of the threshold function H(¢) does not
control @ to 0.2. The dot—dash curve in figure 12 shows
the analytic approximation (21) using these values of
oy and o,.

The threshold function (23) was obtained by the
purely mathematical device of requiring the analytic
approximation (22) to give a constant output @. This
can be related to the nonlinear model of an inhibitory
interneuron developed in §4¢, by using the fitting
procedure described in the legend to figure 5. The
resulting output is the solid curve in figure 12, showing
that reasonably good control can be achieved with
the nonlinear IIN model in the region 0.15 < ¢ < 0.9.
The broken curve in figure 12 is obtained using
H = 100¢ + 3.36, which is a linear fit to (23). Pattern
separation can also be calculated for this model, using
the analytic approximation (42) with the nonlinear
threshold function. Significant separation is found,
comparable to the best separation in figure 6a.

Overall, it can be concluded for the large-R case that
stochastic variability of transmitter secretion is still
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Figure 11. Granule-cell output for a network with a large number of inputs to each granule cell. R = 100 and the
granule-cell threshold function H is given by (23). This could have application to the input of the hippocampus. (a)
Fixed synaptic weights: W, = 1 and M = 1. The fluctuations in output are related to the ‘saw-tooth’ behaviour found
in the R =4 case (figure 3a), but have greater frequency and smaller amplitude. The calculation uses (11).
() Variable weights on the inputs to the granule cells: u,, = 1, o, = 0.05, M = 1. Considerable smoothing has now
been achieved in all except the small-¢ region. Note that the standard deviation ¢, = 0.05 is an order of magnitude
less than that required to smooth the R =4 case, indicating that less stochastic variability is needed in the
hippocampus. The calculation uses (32). A similar smoothing can be achieved by taking W, fixed and M variable.
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Figure 12. Granule-cell output for R = 100 and various
choices of the threshold function H. In each case the weights
are variable, with means 1 and o, = 0.05, ¢,, = 0.01. The

calculations use the analytic approximation (21). (——),
Nonlinear model (18). The actual function used is H =
12.54+415/(1.0459.5/(20¢p— 1.0 —1n (20¢))) ; (------ )

linear model: H = 100¢+3.36; (—-—), idealized model
(23). The idealized model gives the flattest output, but this is
artificial since it was constructed purely for that purpose.
More significant is the fact that the nonlinear model, which
does have a biological basis, can also give satisfactory control.

Phil. Trans. R. Soc. Lond. B (1991)

important, although the magnitude of this variability
can be considerably less than for the small-R case. Also,
the nonlinear model of the IIN can give satisfactory
threshold control on the granule cells, although the
deviation from linearity is now not so pronounced.

(¢) Experimental testing of the model networks and
the role of probabilistic secretion of quanta

The proposed role of activity regulation by the
granule cell network described above can be tested
experimentally for both the cerebellum and the
hippocampus as follows. Stimulating electrodes placed
on the input to an impaled granule cell (either the
mossy fibres of the cerebellum or the pyriform pathway
axons of the hippocampus) allow varying numbers of
input axons to be excited, depending on the strength of
the stimulation (a relative estimate of the numbers of
these axons could be ascertained by recording the field
potential near them). The firing or not of the granule
cell at each stimulus level (proportional to ¢) would
then be noted and the procedure repeated for at least
20 granule cells receiving this input from these axons;
averaging over the results for the 20 or more granule
cells at each stimulus strength should then give an
estimate of the activity regulation of the network; that
is, the value of @ for each ¢. Blocking inhibitory
transmission from the interneurons to the granule cells
and repeating the above procedure would test the role
of the inhibitory interneuron (IIN). It might also be
possible to test for the role of stochastic temporal
variability at synapses in activity regulation by
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repeating the above procedures for determining ¢ and where b(k; R, ¢) is the binomial probability function
@ after blocking autoinhibition at the granule-cell

synapses. It has been shown that blocking auto- R

inhibition at excitatory synapses, which is often bk R, p) = (k)¢k<l — @)

mediated by adenosine (see, for example, Dunwiddie

& Hoffer 1980; Bennett & Robinson 1990; Bennett

et al. 1990), can greatly increase the stochastic ~ Consider now patterns x and y, and let 4,, 4,, 4,, be
temporal variability. These experiments may be most  the number of inputs active for x, for y, and for both x
appropriately carried out on i vilro slices of the and yp, respectively. Then, from (10),

hippocampus or the cerebellum, cut in such a way as R R mmoa

to include the lamellae organization of the axon inputs Y -3y 5 '
to the granule cells in the slice. “

B

p=1 g=1 r=max (0, p+q—R)
The proposed role of pattern separation by the xP(Q,> H,, Q,>H,| A, =p, A4, = q, 4, =1)

— granule-cell network can be tested in an analogous way
<< to that for activity regulation. In this case, however, at XPd, =p, 4, =q,d4, =7)
> s least three stimulating electrodes are required on R
O ~ separate components of the axon input to the granule = 2 X W, (26)
[ E cells. One of these electrodes is always stimulated in P> Ha > Hy
O con.Junctlon yvith either of the ‘two, and the axons it where
I o excites cog.:nute t-he }(jverlapplr}llg clf)rr}llpon?nt lof _ the oo

patterns. anges 1n the strengths of the stimulations _ ’
= w from these electrodes will modify 7,, and recording of Wy = r:max(%pm—m Woar (27)
- the firing or not over a large number (> 20) of granule
:_Sg cells will allow estimates of T.,, in an analogous way to and W, is the multinomial distribution:
= the estimate of @. The contribution of the inhibitory
85 i interneuron and of stochastic variability to pattern W R
§§ 0 i)elgili?r:grérurg;y also be tested with appropriate A (= A (R—p—g+7)!
=< X (=) (B )"
Sl (d) Output control and memory storage X (Yray)" (1 _¢z_¢y+¢1y)R_p_qw'

One very important reason for controlling granule-
cell activity to a low level is related to the possible
storage of the resulting output patterns in later stages
of the cerebellum or the hippocampus. It has been
shown for a variety of theoretical memory-storage

(ii) Analytic expressions for the case W, = 1, M random

For the special case where all W, = 1, and M enters
the threshold equation linearly, as in equation (4),
analytic expressions can be found for @ and T,
analogous to those of Torioka (1978, 1979). Equation

models that sparse encoding of the information to be (24) still holds with P(4 = k) binomial as before, but
stored considerably increases both the number of

patterns that can be stored and the reliability of recall

(Amit et al. 1987; Palm 1988; Amari 1989). The P(Q>H|A=k) = P[M* < o, (¢)],

present work emphasizes the vital role played by the

stochastic secretion of transmitter in achieving the | jere (3) and (4) have been used for H,

necessary sparseness M* = (M=) /73y and a,(@) = (b0, — i 09)]/
[0 0(4)]. Thus

now

8. APPENDIX

(@) Analytic expressions for granule-cell output and _ z .
- pattern separation in various cases ¢ = 1 Fau- [ @)1 6 (K; R, &), (28)
< — (iy W, =1, M = constant
> — For the special case where all W, =1, and M is a  where F,.(x) is the distribution function for A *.
o % constant, simple analytic expressions can be found for Under the usual assumptions, M* will have the
oY, @ and ¥ (Torioka 1978). Let 4 be the number of  standard normal distribution N(0,1), and so E,. is

= M

O active inputs to the granule cell. Then, from (6), E m> Where
L O :

=3 PQ>H|A=k PAd=k), 24) .,
H o k=1 ) ) ( Emrm(x) = m\f e 2 dt (29>

where the £ = 0 term is omitted, since it is assumed that
the granule cell does not fire spontaneously. As each

. oy . . . is the standard normal distribution function. From
input has the same probability ¢ of being active, this

leads to (26),
R R R
D= 3 bk;R ¢), (25) V=X ZP(p>H,q>H)W,, (30)
k>H »=1¢=1

PHILOSOPHICAL
TRANSACTIONS
(@)
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where W, is given by (27). Thus

Y’xy=§§P{M*<a<¢z M* <‘x<¢y) >
= S S min By fay (B Fope [y () W (31)

(iii) Analytic expressions for the case W, random, M constant

Consider now the case where M is constant, and for
convenience set M = 1. If it is further assumed that the
weights W, are identically distributed normal random
variables with distribution N(u,0%), then the fol-
lowing modification of the method of Appendix a(ii)
gives exact analytic expressions for @ and ¥,,. @ is still
given by (24), but in evaluating P(Q > H|A = k) use
is made of the fact that @ is the sum of identically
distributed normal random variables, and so is normal
itself with distribution N(kpy, ko%,). Thus

M:o

D = X EonlBe($)1b(k; R, $), (32)

k

where 8,(¢) = (kpw—0,—0($))/(owV/ k).
¥, is given by (26), where (@,, §,) is now bivariate
normal, with correlation coefficient

_ cov (Q,,Q,14,, = 1)
Prar = Tvar (Q,1 4, = p)var (Q,14, = ¢)]

NOW Qz = 2£=1 I/V;cxlc and Qy = Zf=1 W);Z/k, Where
each W, W, consists of both a spatial and a tem-
poral part, as in (15). This splitting makes no differ-
ence to the variances, and var (Q,|A4, = p) = po?,
var (Q,| 4, = q) = qo},, but because the temporal
parts corresponding to x and y are independent,
cov (W, W) = 0%, where o is the standard deviation
ofthespatialpartof W, and hencecov (Q,, Q, 1 4,, = 1) =

ros. Thus pp,, = [1/v/ (pg)] (os/oy)* and

1

R R min(p, q)

y,=X% %

p=1 g=1r=max (0, p+q—R)
X LL=By(Da)s = Bo(P0)s Poar] Woars (33)

where

L(h,k,p) = J d"f [2my/ (1—=p*)] 7

x*—2pxy+y
—_— 34
XCXP[ 2( 1—p? )]dy o

is the bivariate normal probability function (Abramo-
witz & Stegun 1965).

Even if the W, are not normally distributed, the
above formulae will still be approximately true, the
accuracy becoming better as R increases.

(b) The relation between spatial and temporal
variability of synapses and probabilistic firing of
neurons

In the formalism used in this paper, the effect that
the firing of a neuron has on other neurons is contained
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entirely in the weights of the synaptic connections
between them. As discussed in §2, these weights contain
both a temporal part describing variations in successive
firings at a given terminal and a spatial part describing
variations from terminal to terminal. The total weight
is thus time-dependent.

A number of neural network theories use an
alternative formalism in which the connecting weights
include only the spatial variability (and hence are
time-independent), while the temporal variability is
accounted for by making the firing of the neuron
depend on its total input in a probabilistic way (Little
1974; Peretto 1984). Specifically, the probability of a
neuron firing is taken to be

_ 1

eI ATy o
where @ is the total input calculated by using time-
independent weights, 6, is the intrinsic threshold and £
is a parameter. This form was originally chosen to
exploit an analogy between model neural networks
and a statistical-mechanical system of interacting spins
(Little 1974); more generally, this choice ensures that
the equilibrium state of the system is the Boltzmann
distribution and allows techniques developed for the
analysis of spin-glass systems to be applied to neural
networks (Peretto 1984; Amit, Gutfreund & Sompo-
linsky 1985). The form (35) has also been justified on
biological grounds (Shaw & Vaseudevan 1974 ; Burnod
& Korn 1989).

The purpose of this section is to show the relation of
the present approach to the probabilistic firing
formalism. Consider a single neuron with R inputs,
weights W, k= 1,2,..., R and intrinsic threshold 6,,.
Suppose a specific firing pattern x = (x;,%,,...,%,),
where x; = 0,1, is placed on these inputs, so that the
total input to the neuron is Q =X, W, x,. In the
present formalism, W, can be written as the sum of a
spatial part W and a temporal part W (sce (15)),
and corresponding to this division, @ = Q°+ @, where
QS =2, Wix,and Q" =X, W/ x,. Suppose the same
pattern x is placed repeatedly on the inputs to this
neuron. Then @9 is a constant, but Q* is a random
variable which, under the assumptions of §2, has an
N(0,70%) distribution, where 7 is the number of active
inputs under pattern x. The probability that this
neuron fires is thus

»— P00 :P( Q—EQ) _ 6,~E(Q) )

Vivar (@)~ V[var (@)1
Q% var(Q) =107 and [Q—E(Q)]/

Since E(Q) =
@ )] has an N(0, 1) distribution, this becomes

v/ [var (@

‘q, = F;mrm[<QS'—00)/(O’T\/7)], (36)

where F, . is given by (29).

This is now to be related to 2, as given by (35). It
is clear that @ = X£_, W¢x, = @, since in the prob-
abilistic-firing model only the spatial variability is
placed in the synaptic weights. Expression (35) is then
a very good approximation to (36) if the choice g =
[4/4/(21)] (1/0 ,A/7) is made. (This gives 2 and Z the


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Secretion at granule cell synapses
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Figure 13. Comparison of two expressions for the probability
that a neuron fires when its potential is x above threshold :
), probability = E,__ (1/(2%) fx/4) (equation (36));
(-=---- ), probability = 1 /(1 +exp (—px)) (equation (35)).
The two cases are § = 2.0 and g = 0.5.

same slope at @° = 6,.) Figure 13 shows the agreement
between the functions & = E, . (1/(2n) fx/4) (solid
lines) and 2 = 1/[1+exp (—f)] (broken lines) for the
cases f#=2.0 and g =0.5. Note that £ is inversely
proportional to the standard deviation of the temporal
variation in W, which is in accord with its statistical-

mechanical interpretation as an inverse temperature.

(¢) Nonlinear model for the inhibitory interneuron

This section provides the details of the derivation of
(17) for the output of the nonlinear model of the
inhibitory interneuron described in §4¢. Under the
assumptions stated there, provided § > £, the IIN fires
in the time-interval 0 < ¢ < 7, where 7T is given by
Se™" =} and its firing rate is governed by the
parameter B(¢) = Se™*—h. Hence the total number of
impulses fired is

" {(l/oc)(S——h)(h/oc)ln(%, S>h
[ -
0 0

, S <h.

Using § = nu, ¢, this can be written as

. (h/2) [($/do) —1—In($/$)], &> ¢,
fo Bty di =

0, P < by,

where ¢ = h/nu,,. Thus the output of the IIN, for an
input activity level ¢, is proportional to G(¢) as given
by (17).
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(d) Analytic approximations for granule-cell output
and pattern separation

To obtain an analytic approximation for the
granule-cell output activity @, write (6) as

( Z-EZ) _E(Z)
¢‘P(v<var<2>> v<var<Z>>)’ 7)

where Z = Q—H, E(Z) is the expected value of Z and
var (Z) is its variance, and then approximate it by
b= Fnorm(E(Z)/\/[Var (Z)]>> where Exorm(x>7 the dis-
tribution function for the standard normal distribution,
is given by (29). Putting Z = Q@ — H then gives

E(Q)—EH) )
v [var (Q)+var (H)])

If W, has a N(uyy, 02,) distribution, then the mean and
variance of @ are

E(Q) = ¢Ruyy, (39)
var (@) = ¢(1—¢) R(uiy +07y) + ¢*Roy,. (40)

If M has a N(p,,,03,) distribution and H has the form
H=0,+MG(¢), where G(¢) is independent of M,
then E(H) = 0y+p,, G(¢) and var (H) = o3, [G(¢)]*.
If H has the more complicated dependence on M given
by (18) then a further approximation is needed.
If fAM) is a differentiable function of the random
variable M and o, < y,,, then E[ f(M)] = f(x,,) and
var [ fIM)] = [ f'(#y)]? 03 (Cramer 1946). Taking
SIM) = Mc,/[M+c,/G(¢)] leads to

(38)

norm

dx F (

H)~ 6 27 S
B ot /G

r ~ (c;6/G(9))* 2

v el

It turns out that in practice these corrections due to
variable M are small, and the above approximations
are entirely adequate.

The above method can be extended to give an
analytic approximation for ¥. One starts by writing

(10) as

v,=P

xy

(ZZ—E<Zx> . EZ)
Vivar(Z)]” Vivar ()]
Z,—EZ,) S E(Z)

v/ [var (Zy)]

41
Stz @
where Z,=Q,—H,, Z,=Q,—H, This is now
approximated by a bivariate normal distribution :
~ E(H,)—E(Q,)
o LT T raT
E(H,) - E(Q,)
\/[var(Hy)+var(Qy)]’p)’ (42)

where

— cov (Qz: Qy) +cov <Hz> Hy)
V[var (H,) +var (Q,)] [var (H,) +var (Q,)]’

p (43)

Vol. 332. B
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The distribution function L(k, £, p) is given explicitly
by (34). These expressions can be evaluated for various
cases but here we given only the case of main interest,
which is W, and M both variable. The means and
variances can be found from (39) and (40), and the
covariance is calculated to be

cov (Q,, Q) = (Yoy— B2 b)) Ry +05) + 4,6, Ro.

Note that in the covariance the distinction between
spatial and temporal variation in the synaptic weights
becomes important (see the discussion surrounding
(15) and (16)):itis ox and not o, that appears in the
expression for the covariance, since the temporal
variations in the x- and y-inputs are uncorrelated.

If H has the simpler form H = 0,+ MG(¢), then
E(H) = 0,41, G(),  var (H) = [G(g)]*0%,  and
cov (H,, H,) = G(¢,) G(¢,) 03 For the more general
form (18),

Mar €1

foas 05/ G($)

~ [cic/G(P)1
v R G G T

[c1¢/G(D,)] [ Cz/G(¢y>] o2
(ar + o/ GBI [a + ¢, /G ()12

E(H) ~ 0,+

cov (M, I, ~

The last result is derived by using cov (f(M),g(M)) =
S () & () 03, Substitution of these expressions in
(42) and (43) gives the final expression for ¥, .

Equation (42) provides an analytic explanation for
two cffects which were observed in the numerical work
in §5. The first is the increased pattern separation that
occurs when the temporal variability of W, is increased.
That this will happen is clear from the above formulae:
as oy is decreased, with o, kept constant, the variances
of @, and @, remain unchanged but the covariance
will decrease. Thus the correlation coefficient p, given
by (43), will decrease and hence pattern separation
will increase. The second effect is the increased pattern
separation that occurs when the sum of weights on the
input fibres to a granule cell is restricted. If X, W, =
constant, then the variance and covariance of @ must
be replaced by var(Q,) = ¢.(1-¢,) R(uy +07,) +

zzRO-?I‘ and cov (Qz! Qy) = (wty—séz ¢y> R(/'LIZ’V +0’§> In
this case both the covariance and the variance are
reduced, but the overall effect is to cause a reduction in
‘pand hence enhanced pattern-separation. For example,
for the case R=4, pu, =1, o, =0,=0.5, 0, =0,
¢, =¢,=0.5, p changes from (10¢,,—2)/3 to
44r,,— 1 upon imposition of the restriction 2 W, = 4.
This causes a reduction in p over the entire range of
V(0 < ¢, <0.5), with the largest reduction being
for small yr,, , in accordance with figure 7.

(e) Simulation methods

There are two aspects to the simulation of the
network of figure 1: the first is the generation of
random input patterns x and the second is the
incorporation of the variable weights W, and M. To
find the output activity @ for an input pattern of
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activity ¢, one generates random numbers S, uniformly
distributed on (0,1), and sets x, = 1 if S, is in the
subinterval (0,¢) and x, = 0 otherwise. The x,’s are
then random variables with P(x, = 1) = ¢. A complete
pattern would consist of x, x,, ..., x,, since there are n
input fibres. However, a single granule cell has only R
inputs and it is therefore only necessary to generate R
numbers Xy, %,,...,x, for each simulation trial. R
random variables W, are then chosen from the
distribution N(py,0%,) and the sum @ = XF I, x,
evaluated to give the total input @ to the granule cell.
The granule cell threshold is now set, using M taken
from N(py, 0%) in H=0,+MG(¢) (or in the more
accurate expression (18)), and the output is then 1 if
@ > H and 0 otherwise. This completes one simulation
trial. In the next trial, a new set of x,’s is generated,
and also new W,’s and M are chosen from the normal
distributions. This corresponds to sampling from a
different (randomly chosen) granule cell: the new sct
X15 Xy, ..., X can be thought of as either a different part
of the same complete pattern xy, x,, ..., x, or, equiva-
lently, part of a new pattern with the same activity ¢;
the new choice of weights corresponds to taking a
different granule cell. In this way a network with an
arbitrary number of input fibres and granule cells can
be investigated by doing simulations on a simple
network with R inputs and one output. The output
activity @ is then found by repeating the above
procedure N times and computing the average
number of times the output is 1. Typically, N, was
taken to be 10000; this still left some statistical
fluctuations, and the data were smoothed before being
graphed.

For pattern separation, one must consider two input
patterns x and y; these are placed sequentially and
independently on the inputs but, for the purposes of
collecting statistics on the output, both members of a
pair must be treated together. There are now four
events to be considered: a given input fibre may be
active under (i) x only; (ii) y only; (iii) both; (iv)
neither. The corresponding probabilities are (i)
The interval (0,1) is divided into four subintervals
with lengths equal to these probabilities, and random
numbers S,k =1,2,..., R, uniformly distributed on
(0, 1), arc again generated. x, and y, are then assigned
values according to the position of S, e.g. if S, falls in
the first subinterval ¢, —,, then x, =1 and y, = 0,
corresponding to the Ath input being active under
pattern x but inactive under y. Again R random
variables W, are chosen from the distribution N(u,,,
oyy) and the sums Q, =X Wox,, Q,=2F Wy,
calculated. Note that the division of I, into spatial and
temporal parts (sec (15)) is now important: in
calculating the contributions to @, and @, the same
spatial weight W} (but a different temporal weight
W) must be used in the region y,,, where both x, = 1
and y, = 1. The same applies to M since, as discussed
in §4¢, it takes into account a spatial variability. The
thresholds H, and H, are now set, and the firing of the
granule cell under each pattern noted. Again, a large
number of repetitions are performed, and these can be
thought of as sampling from randomly chosen granule
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cells, either under the same input patterns on the whole
set of n input fibres, or under different input patterns
with the same ¢, ¢, and . @, and @, are calculated
as the fraction of times the output is 1 under x and y,
respectively, and ¥, as the fraction of times it is 1
under both pairs of input patterns.

The restriction XfF_, W, = C (sec §5) was imple-
mented by taking R random numbers @, from an
N(0,07) distribution, and forming W, = @, +C/R—
(1/R) 27, Q,. W, then has mean C/R and standard
deviation oy, = g/ (1 —1/R).
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